ﬁm& T-VEC Technologies, Inc.

Test Sequences Generation from
Control System Models

Presented at
JaSST: Japan Symposium on
Software Testing

By:
Robert D. Busser
T-VEC Technologies, Inc

‘jma Test Sequences Generation from Control System Models

ent with Simulink

Simulink

T-VEC Graphical Console Interface
User Interface mr—mmmmm—m—em

Simulink
Tester GUI

/ = Model Analysis

= Specification

Capture PR, e —on = Test Generation

« Simulation = Coverage Analysis

= Code = Test Driver Generation
Generation = Model Translation = Test Results Analysis

‘jma Test Sequences Generation from Control System Models

Model Analysis

Identifies model defects
— Logic errors - (e.g., unreachable paths)

— Mathematic exceptions (e.g., divide by zero)
— Range specification errors
— Type overflows

Prove model properties through assertions
— Specify additional relationships for model

Page 1

‘jma Test Sequences Generation from Control System Models

ication and Validation

V&V

= Model Analysis
— Identifies defects in model's logic and input signal domain expectations

= Test Generation From Models

— Test Vectors - Input values and expected output values for every logical
path in the model

— Test Sequence Vectors - Input values and expected output values for each
of instance of a system's execution over multiple cycles

= Test Driver Generation

— Automatic creation of test drivers from test vectors and test sequence
vectors

— Test drivers for application source code, verifies code against model

— Test drivers for Matlab simulator, helps validate model and verify that the
model translator and test vector generator have properly interpreted the
model‘s semantics

— Test driver mechanism based on template description of test drivers can be
customized for other platforms

Process Overview
Translator Model Assertions
Configurations Test Results
Signal Test Sequence Analysis
i ' Ranges Configurations
Simulink \ // T-VEC ‘ i
Model Specifications
2
~ Results ‘ Model
Autocode ~ Analysis &
Source Code ~ < Coverage
Execution fle—m — — — — ‘ i D‘rri?/:(rs
Environment
Source Code Test
Created by Hand ‘ '
Vectors

or Generation
= Unit, integration and system level tests

Test vectors include test inputs, expected test outputs,
and traceability to model

Test output values derived independently from Simulink

Configurable test coverage

— Default - covers explicit paths (if, switch)

— Path - covers all paths (implicit and explicit)
— Condition - covers all conditions (MC/DC)

MCDC

Test sequences for testing dynamic aspects of model

‘jma Test Sequences Generation from Control System Models

neration (cont)

All model control paths are identified

For each path, constraints are analyzed

Tests are selected along constraint boundaries
Test cases stress constraint and input boundaries

User can add constraints to model to test specific
properties

‘jma Test Sequences Generation from Control System Models

Vectors
A test vector is a single input value / output value set used
for testing a single execution cycle

— State variables are set to initial values specified in model

Verifying dynamic behavior requires tests that span
multiple sample periods

— State variables initialized to values specified in model

— State variables updated between each subsystem reference
during the vector generation process

Test Sequence Vectors include test input values and

expected output values for multiple cycles of execution

Provides ability to verify state changes over time and the

dynamic response of closed-loop designs to changing input

signal values

.

Test Sequences Generation from Control System Models

xample Simulink Flow Regulator

B
TEEAE)RR s Gmsc EEPR

Page 2

‘jma Test Sequences Generation from Control System Models

User customizable
templates generate
multiple outputs
Included templates:

— C test drivers for RTW
GRT and ERT code
generator Driver

Generator

— Simulation scripts for
Matlab/Simulink
Supports test drivers for
any language, script, or
execution environment
Templates provided for
code coverage tools

‘jma Test Sequences Generation from Control System Models

s Have Time Complexities - Flow Regulator

Temp Range [-100...300]

Open
Electronic
Regulator
Sensor Closed

Operational Summary
If Temp is less than 120, then valve is Closed
If Temp is becomes greater or equal to 180, then valve is Open
and remains Open until Temp drops below 120

‘jma Test Sequences Generation from Control System Models

Properties of temperatureSensor

uma Test Sequences Generation from Control System Models

en Single Cycle and Sequence

uma Test Sequences Generation from Control System Models

ludes Feedback via Unit Delay

« Key information in temperatureSensor single cycle
the single state ie2

« Vector values for
temperature selected at
high and low bound values

« Unit delay fixed at zero - its
initial value temperatureSensor sequence

+ Temperature
sequences
from 125, 130
122,10 119

<reference num="3">

« Signal undergoes
first order filter

<reference num="4">
« Values

produced
show filtering
action over

multiple cycles

+1Test= * 1Test=
1 Cycle of 4 cycles of
subsystem subsystem
execution executions

s
 To— | | v

« Vector values for temperature selected at high and low bound values

+ Single Cycle tests can cover most of the logic conditions

« UnitDelay blocks fixed at 0 - it's initial value - limits coverage of
certain cases such as AND gate output = TRUE

T rm—

Page 3

uma Test Sequences Generation from Control System Models

en Single Cycle and Sequence

« Temperature values based on
complex sequence

« Signal goes above the upper
limit at cycle 3

« But begins to ramp down falling
below lower limit at cycle 8

« However, latching keeps the output
value at 1 from the time signal
exceeded upper limit until the time
it fell below lower limit

« AND gate value must be 1

Tests for flow_control_logic involving 10 cycles

uma Test Sequences Generation from Control System Models 2il

ntegration Behavior Over Time

« The integration of the
temperature sensor
filtering action with
the flow_control_logic
latching action can be
verified most effectively
using the TSV approach

= Simulink models can be translated into a standardized form for the
purpose of independent analysis outside of Simulink (SL2TVEC)

= Simulink models can be analyzed for defects in logic and computational
relationships using an independent application (T-VEC)

= Test vectors and Test sequence vectors can be automatically derived from
Simulink models using an independent application (T-VEC)

= Test drivers can be automatically produced from test vectors and test
sequence vectors for the purpose of verifying a model's correct
implementation (T-VEC)

= Test vectors verify that individual logic conditions and computations are
correctly implemented in target application

= Test sequence vectors verify that the dynamic time-sensitive properties
of a model are correctly implemented in target application

« Test Sequences can be applied at higher levels to demonstrate system integration
behaviors

B TT BRI

esults (Model) to Actual Results
from Execution of Applicatio
.

— : =
P RPN BRSNS

« Comparison of
expected output FEEEE
values (T-VEC) o
and actual
values produced
by executing the
application code |
over 10 cycles

« All values
comparisons
passed,
indicating
application
correctly
implements the
semantics of the
flow control
model

Page 4

