
Advances in Continuous Integration
Testing @Google

By: John Micco - jmicco@google.com
投稿者：ジョン・ミッコ

Testing Scale at Google
●  4.2 million individual tests running continuously

○  Testing runs before and after code submission

●  150 million test executions / day (averaging 35 runs / test / day)
●  Distributed using internal version of bazel.io to a large compute farm
●  Almost all testing is automated - no time for Quality Assurance
●  13,000+ individual project teams - all submitting to one branch
●  Drives continuous delivery for Google
●  99% of all test executions pass

Testing Culture @ Google
●  ~11 Years of testing culture promoting hand-curated automated testing

○  Testing on the toilet and Google testing blog started in 2007
○  GTAC conference since 2006 to share best practices across the industry
○  First internal awards for unit testing were in 2003!
○  Part of our new hire orientation program

●  SETI role
○  Usually 1-2 SETI engineers / 8-10 person team
○  Develop test infrastructure to enable testing

●  Engineers are expected to write automated tests for their submissions
●  Limited experimentation with model-based / automated testing

○  Fuzzing, UI waltkthroughs, Mutation testing, etc.
○  Not a large fraction of overall testing

Regression Test Selection (RTS)

Regression Test Selection (RTS)

Current Regression Test Selection (RTS)

Postsubmit testing

●  Continuously runs 4.5M tests as changes are submitted
○  A test is affected iff a file being changed is present in the transitive closure

of the test dependencies. (Regression Test Selection)
○  Each test runs in 1.5 distinct flag combinations (on average)
○  Build and run tests concurrently on distributed backend.
○  Runs as often as capacity allows

●  Records the pass / fail result for each test in a database
○  Each run is uniquely identified by the test + flags + change
○  We have 2 years of results for all tests
○  And accurate information about what was changed

See: prior deck about Google CI System, See this paper about piper and CLs

Milestone Scheduling

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Cut milestone
at this CL

8

Milestone Scheduling

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

9

Milestone Scheduling

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

10

Milestone Scheduling

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

11

Milestone Scheduling

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

12

Reducing Costs

●  RTS based on declared dependencies is problematic!
○  A small number of core changes impact everything
○  Milestone Scheduling ends up running all tests
○  Distant dependencies don't often find transitions
○  99.8% of all test executions do not transition
■  A perfect algorithm would only schedule the 0.2%

of tests that do transition
○  There must be something in between 99.8% and

0.2% that will find most faults

RTS Affected Target Counts Frequency

●  Stats:
○  Median 38 tests!
○  90th percentile 2,604
○  95th perentile 4,702
○  99th percentile 55,730

●  A tiny number of CLs is causing over-
scheduling

●  It only takes 1 CL on the long tail to
force a milestone to run all tests

Test Results

NOTE: Presubmit testing makes post-submit failures relatively rare - but we still spend 50% of testing resources on post-submit testing.

Project Status and Groupings
●  Tests are grouped into "projects" that include all relevant tests needed to

release a service
●  This allows teams to release when unrelated tests are failing
●  Current system is conservative

○  Gives a green signal iff all affected tests pass
○  100% confidence that a failing test was not missed

●  We require a definitive result for all affected tests (selected by RTS)
○  Projects only receive a status on milestones
○  We say that projects are "inconclusive" between milestones - when they get affected
○  Since milestones are far apart projects are frequently inconclusive

Project Status and Groupings

Ads gmail Geo Social

CL5

CL6

CL7

CL100 - Milestone

...

Greenish Service

●  Reducing over-scheduling means < 100% confidence
○  Not all tests will be run!
○  Milestones will be far apart

●  Need a signal for release
●  Introduce "Greenish" service
○  Predicts likelihood that skipped tests will pass
○  Provides a probability rather than certainty of green

Greenish

Ads gmail Geo Social

CL5

CL6

CL7

CL100 - Milestone

...

98%

98% 99%

92% 95% 90%

Predicted confidence

Still failing

New Scheduling Algorithms

●  Skip milestones and schedule tests with highest
likelihood to find transitions

●  Occasional milestones will find transitions missed by
opportunistic scheduling

●  Goal: Find all transitions using vastly reduced resources
●  Decrease time to find transitions

Confidential + Proprietary

Safe Results skipping this target would not miss a transition

Changelist CL1 CL2

Target Result P P

Safety - Safe

Transition - P->P

* = affected

Time

Confidential + Proprietary

Safe Results skipping this target would not miss a transition

Changelist CL1 CL2

Target Result F F

Safety - Safe

Transition - F->F

* = affected

Time

Confidential + Proprietary

Safe Results skipping this target would not miss a transition

Changelist CL1 CL2 CL3

Target Result P * P

Safety - Safe Safe

Transition - P->P P->P

* = affected

Time

Confidential + Proprietary

Safe Results skipping this target would not miss a transition

Changelist CL1 CL2 CL3

Target Result F * F

Safety - Safe Safe

Transition - F->F F->F

* = affected

Time

Confidential + Proprietary

Unsafe Results skipping this target would definitely miss a transition

Changelist CL1 CL2

Target Result P F

Safety - Unsafe

Transition - P->F

* = affected

Time

Confidential + Proprietary

Unsafe Results skipping this target would definitely miss a transition

Changelist CL1 CL2

Target Result F P

Safety - Unsafe

Transition - F->P

* = affected

Time

Confidential + Proprietary

Maybe Unsafe Results skipping this target might miss a transition

Changelist CL1 CL2 CL3

Target Result P * F

Safety - Maybe unsafe Maybe unsafe

Transition - P->F P->F

* = affected

Time

Confidential + Proprietary

Maybe Unsafe Results skipping this target might miss a transition

Changelist CL1 CL2 CL3

Target Result F * P

Safety - Maybe unsafe Maybe unsafe

Transition - F->P F->P

* = affected

Time

Skipping milestones: <1% test targets detect breakages

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Transition

Skipping milestones: breakages imply cuprit finding

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Transition
culprit

Skipping milestones: culprits detected and found

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Skipping milestones: culprits detected and found

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Culprit detected & found

Skipping milestones: culprits detected and found

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Culprit detected & found

Skipping milestones: culprits detected and found

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Culprit detected & found

Skipping milestones

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Culprit detected & found

Skipping milestones

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Skipping milestones: cuprit finding, acceptance tuning

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Skipping milestones: cuprit finding, acceptance tuning

A
ffe

ct
ed

 T
es

t T
ar

ge
t s

et

Change Lists

Evaluating Strategies
●  Goals

○  Low testing cost
○  Low time to find a transition
○  Low risk of missing transitions

●  Exclude Flakes using 3 different exclusion mechanisms
●  Measure "Safety"

○  Skipping a test is "safe" if it did not transition
○  100% safety means all transitions are found

●  Evaluate new strategies against historical record
○  Allows Fast algorithm iteration time
○  Must excludes flaky test failures

Offline Safety Evaluation

●  91% of changes do not
cause a transition - we
could safefly skip all
testing for them!

●  Of the remainder, a
perfect algorithm could
skip more than 98% of
the currently selected
tests and find all
transitions

●  Random is a curve due
to probability
distributions and large
impact changes

Flaky Tests

●  Test Flakiness is a huge problem
●  Flakiness is a test that is observed to both Pass and Fail with the same code
●  Almost 16% of our 4.2M tests have some level of flakiness
●  Flaky failures frequently block and delay releases
●  Developers ignore flaky tests when submitting - sometimes incorrectly
●  We spend between 2 and 16% of our compute resources re-running flaky tests

Analysis of Test Results at Google

●  Analysis of a large sample of tests (1 month) showed:
○  84% of transitions from Pass -> Fail are from "flaky" tests
○  Only 1.23% of tests ever found a breakage
○  Frequently changed files more likely to cause a breakage
○  3 or more developers changing a file is more likely to cause a breakage
○  Changes "closer" in the dependency graph more likely to cause a breakage
○  Certain people / automation more likely to cause breakages (oops!)
○  Certain languages more likely to cause breakages (sorry)

●  See our accepted Paper at ICSE 2017

See: prior deck about Google CI System, See this paper about piper and CLs

Flaky test impact on project health

Flakes

●  Many tests need to be aggregated to qualify a project
●  Probability of flake aggregates as well
●  Flakes

○  Consume developer time investigating
○  Delay project releases
○  Waste compute resources re-running to confirm

Percentage of resources spent re-running flakes
% of testing compute hours spent on retrying flaky tests

Sources of Flakiness

45

●  Factors that cause flakes
■  Test case factors

●  Waits for resource
●  sleep()
●  Webdriver test
●  UI test

■  Code being tested
●  Multi-threaded

■  Execution environment/flags
●  Chrome
●  Android

○  ...

Exec
Env

Code
Being

Tested

Test
Case

Android

UI

Multi-threaded

See: https://pdfs.semanticscholar.org/02da/46889ee3c6bc44bfa0fc45071195781b99ce.pdf

Flakes are Inevitable

●  Continual rate of 1.5% of test executions reporting a "flaky" result
●  Despite large effort to identify and remove flakiness

○  Targeted "fixits"
○  Continual pressure on flakes

●  Observed insertion rate is about the same as fix rate

Conclusion: Testing systems must be able to deal with a certain level of flakiness.
Preferably minimizing the cost to developers

●  We re-run test failure transitions (10x) to verify flakiness
○  If we observe a pass the test was flaky
○  Keep a database and web UI for "known" flaky tests

Flaky Test Infrastructure

Confidential + Proprietary

5 HOUR PERIOD

TEST 1

TEST 2

Finding Flakes using the historical record
●  84% of test transitions are due to flakiness
●  Concentrated in 16% of the total test pool
●  Conclusion: Tests with more transitions are flaky

Number of Edges Per Target by % Flakes/NotFlakes

Number of Edges

P
er

ce
nt

ag
e

Fl
ak

es
 v

s.
 N

ot
 F

la
ke

s

Number of Transitions Per Target by % Flakes/NotFlakes

Number of Transitions

P
er

ce
nt

ag
e

Fl
ak

es
 v

s.
 N

ot
 F

la
ke

s

Take away message: Test targets with more transitions in their history are more likely to be flakes.
(Number of edges = signal for flake detection)

Flakes Tutorial

●  Using Google BigQuery against the public data set from our 2016 paper
●  Reproduce some of our results

○  Techniques to identify flaky tests using queries
○  Hands on!

●  Hope to see you there!

●  NOTE: A Google account is required for the hands-on portion

○  Send your Google account to john.micco@gmail.com before the lab
if possible!

Q&A

For more information:

●  Google Testing Blog on CI system
●  Youtube Video of Previous Talk on CI at Google

●  Flaky Tests and How We Mitigate Them

●  Why Google Stores Billions of Lines of Code in a Single Repo
●  GTAC 2016 Flaky Tests Presentation
●  (ICSE 2017) "

Who Broke the Build? Automatically Identifying Changes That Induce Test Failures In Continuous
Integration at Google Scale" by Celal Ziftci and Jim Reardon

●  (ICSE 2017) “Taming Google-Scale Continuous Testing,” by Atif Memon, Zebao Gao, Bao Nguyen,
Sanjeev Dhanda, Eric Nickell, Rob Siemborski and John Micco

