
Chaos Engineering to
Continuous Verification

@CaseyRosenthal

CONTINUOUS VERIFICATION

@CaseyRosenthal

What could go wrong in a
complex system?

@CaseyRosenthal

PUSH

LOGGING

BILLING
STAGING

PUSH

LOGGING

BILLING
STAGING

PUSH

PRODUCTION
LOGGING

BILLING

PUSH

LOGGING

BILLING
STAGING

PUSH

PRODUCTION
LOGGING

BILLING

PUSH

LOGGING

BILLING
STAGING

PUSH

PRODUCTION
LOGGING

BILLING

PUSH

LOGGING

BILLING
STAGING

PUSH

PRODUCTION
LOGGING

BILLING

@CaseyRosenthal

P Q

P Q

P Q

P Q

P Q

P Q

P Q

@CaseyRosenthal

API
A

B

Z
... ...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

...

A

B

Z
... ...

API

o11y
...

A

B

Z
... ...

API

...
o11y

A

B

Z
... ...

API

...
o11y

A

B

Z
... ...

API

o11y
...

@CaseyRosenthal

All components could be
100% correct,

and yet the system exhibits
undesirable behavior.

@CaseyRosenthal

@CaseyRosenthal

@CaseyRosenthal

The Verica Open Incident Database (VOID) makes public
software-related incident reports available to everyone, raising
awareness and increasing understanding of software-based failures
in order to make the internet a more resilient and safe place.

About the VOID

https://www.thevoid.community

@CaseyRosenthal

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes

@CaseyRosenthal

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively

@CaseyRosenthal

Mean Time to Resolution
MTTR

The Distribution Matters

Duration & Severity
THEY’RE NOT RELATED!

We analyzed status page data
across almost 7K incidents from 10
different companies.
● Only 2 of them showed very

weak correlations between
duration and severity.

● R = -.18 and -.17, respectively
(p < .05)

MTTR Fatal Flaws
● Provably wrong statistic
● Statistically insignificant data sample
● Duration doesn’t correlate with severity
● Measurement errors
● Unactionable analysis

MTTR Can’t Tell You
● How reliable your software or systems are
● How agile/effective your team or organization is
● If you’re getting better at responding to incidents
● Whether the next one will be longer or shorter
● How “bad” any given incident is

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively
● Myth 5: Avoid Risk

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively
● Myth 5: Avoid Risk
● Myth 6: Simplify

@CaseyRosenthal

A
C

C
ID

EN
TA

L

ESSEN
TIA

L

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively
● Myth 5: Avoid Risk
● Myth 6: Simplify
● Myth 7: Add Redundancy

@CaseyRosenthal

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively
● Myth 5: Avoid Risk
● Myth 6: Simplify
● Myth 7: Add Redundancy

@CaseyRosenthal

How do we survive
the undesirable effects
of complex systems?

@CaseyRosenthal

How do we
make systems reliable?

@CaseyRosenthal

@CaseyRosenthal

@CaseyRosenthal

Economic Pillars of Complexity

@CaseyRosenthal

Economic Pillars of Complexity

@CaseyRosenthal

Economic Pillars of Complexity

@CaseyRosenthal

Economic Pillars of Complexity

@CaseyRosenthal

Economic Pillars of Complexity

@CaseyRosenthal

Software Engineering:
the Reversibility Profession

@CaseyRosenthal

“The chief merit of [software engineering] is its technical
efficiency, with a premium placed on precision, speed,
expert control, continuity, discretion, and optimal returns on
input.”

-Merton

@CaseyRosenthal

s/bureaucracy/software engineering/

@CaseyRosenthal

“The chief merit of bureaucracy is its technical efficiency,
with a premium placed on precision, speed, expert control,
continuity, discretion, and optimal returns on input.”

-Merton

@CaseyRosenthal

Software Engineering:
the Bureaucratic Profession

@CaseyRosenthal

Software Engineering:
doing it WRONG since 1913

@CaseyRosenthal

@CaseyRosenthal

Evolution of
complex system
operations.

One of the most efficient methods for uncovering misalignments
in software is to put the code together and run it. Continuous
Integration was promoted heavily as part of XP methodology as
a way to achieve this and is now a common industry norm.

Continuous Delivery builds on the success of CI by automated
the steps of preparing code and deploying it to an environment.
CD tools allow engineers to choose a build that passed the CI
stage and promote that through the pipeline to run in production.

Like CI/CD, Continuous Verification is born out of a need to
navigate increasingly complex systems. Modern organizations
can’t validate that the internal machinations of the system work
as intended, so instead they verify that the output of the system
matches expectations.

CI

CD

CV

VERICA | CONTINUOUS VERIFICATION

How do other things compare?

Continuous Verification is a proactive, experimentation tool for verifying system behavior.

VERICA | CONTINUOUS VERIFICATION

Don’t fight complexity.
Navigate it.

@CaseyRosenthal

thevoid.community

chaos.community

verica.io @
C

as
ey

R
os

en
th

al

● Myth 1: Remove the People Who Cause Accidents
● Myth 2: Document Best Practices and Runbooks
● Myth 3: Defend against Prior Root Causes
● Myth 4: Measure Reliability Quantitatively
● Myth 5: Avoid Risk
● Myth 6: Simplify
● Myth 7: Add Redundancy

@CaseyRosenthal

@
caseyrosenthal

@CaseyRosenthal

